![]() Procedure for fastening a carbide tooth at a saw blade
专利摘要:
The description relates to a procedure for fastening a carbide tooth (1) at a saw blade (2), with a carbide tooth (1) fabricated according to the saw tooth geometry being held butt-jointed to the prepared front-side abutting surface (3) of the saw blade (2) and then being attached to the saw blade under addition of heat along the joint (10) between the saw blade (2) and the carbide tooth (1). To create favorable process conditions it is suggested that the carbide tooth (1) is welded to the saw blade (2) by means a focal spot (9) of a laser beam (7) extending over the whole joint length. 公开号:US20010006013A1 申请号:US09/745,680 申请日:2000-12-22 公开日:2001-07-05 发明作者:Franz Nobauer;Gerhard Liedl 申请人:Wintersteiger AG; IPC主号:B23D65-00
专利说明:
[0001] The invention relates to a procedure for fastening a carbide tooth at a saw blade, with the carbide tooth fabricated according to the saw tooth geometry being held butt-jointed to the prepared front-side abutting surface of the saw blade and then being attached to the saw blade under addition of heat along the joint between the saw blade and the carbide tooth. [0001] DESCRIPTION OF THE PRIOR ART [0002] To be able, for instance, when cutting wooden lamellas, to keep the wood losses due to machining as small as possible and thus to better exploit the wooden material, cutting gaps as thin as possible are desired, which demands accordingly thin saw blades. However, with such thin saw blades the advantages of resharpenable carbide teeth cannot be utilized, as by fastening carbide teeth at the saw blade via hard-soldering as usual the required strength for cutting in an inhomogeneous wooden material without teeth breaking off cannot be achieved. Although it is known to fix spherical or cylinder-shaped carbide blanks to the tooth tips of saw blades by means of resistance welding, these carbide blanks in fact require complicated finishing by grinding to obtain the desired tooth geometry. As the carbide blanks have to be pressed tightly against the abutting surfaces of the saw blades during resistance welding, an exact positioning of the carbide blanks relative to the saw tooth is impossible due to material melting open in the joint area, which, on the one hand, demands spherical or cylinder-shaped carbide blanks, and, on the other hand, excludes the use of carbide teeth that have already been fabricated according the later tooth geometry before being welded on. To be able to keep the grinding work for finishing the welded-on carbide blanks comparatively low, only the tips of the teeth are made of carbide, so that resharpening such saws with welded-on saw tooth tips made of carbide is hardly possible. [0002] SUMMARY OF THE INVENTION [0003] The invention has therefore the objective to provide a procedure for fastening a carbide tooth at a saw blade in the above mentioned kind, to establish a sufficiently fast connection between the saw blade and the carbide tooth, that is with the carbide tooth being positioned sufficiently accurate to permit the use of carbide teeth fabricated according to the saw tooth geometry, thus making complicated finishing unnecessary. [0003] [0004] The objective of the invention is achieved in that the carbide tooth is welded to the saw blade by means of a focal spot of a laser beam extending over the whole joint length. [0004] [0005] By the application of a sufficiently powerful laser beam the carbide tooth need not be pressed against the related abutting surface of the saw blade during welding, so that the carbide tooth can be fabricated according to the saw tooth geometry before welding and can be exactly attached to the saw blade in a defined position. The welding process is performed simply, as, due to the specific shape of the focal spot of the laser beam, the carbide tooth is welded to the saw blade at the same over the whole joint length, which leads to a largely regular heat load of the carbide tooth and the saw blade with the effect that a sufficiently fast connection between the carbide tooth and the saw blade at a very low risk of fissures is established, that is at a comparatively low welding expenditure, as the laser beam does not require any displacement toward the joint between the carbide tooth and the saw blade. Thus, conditions are achieved that can be compared to those of spot welding, with the welding area, however, not being restricted locally to a section of the joint, but extending over the whole joint length. The desired shape of the focal spot, which is essentially lenticular, can, at a given cross section of the laser beam, be ensured without difficulties via an appropriate optical system. [0005] [0006] As the whole welding area for a carbide tooth is covered by the accordingly shaped focal spot of the laser beam, the saw blade and the carbide tooth, in another embodiment of the invention, can be preheated prior to welding in the area of the joint by means of the laser beam proper at a reduced output, so that the risk of fissures is further reduced. [0006] [0007] To reduce thermal stress, it is common practice for welding to subject the weld joint to a secondary thermal treatment. For this purpose the welding area between the saw blade and the carbide tooth may be reannealed after welding by means of the laser beam, too, at reduced output, so that, for completion of the saw, the welded-on carbide teeth need only be resharpened by grinding. [0007] BRIEF DESCRIPTION OF THE DRAWING [0008] By the example of the drawing the procedure according to the invention for fastening a carbide tooth at a saw blade is illustrated in detail. [0008] [0009] FIG. 1 shows a facility to accomplish the procedure in a schematic side view, and [0009] [0010] FIG. 2 depicts a saw with partly welded-on carbide teeth in a schematic horizontal projection. [0010] DESCRIPTION OF THE PREFERRED EMBODIMENT [0011] The saw blade [0011] 2 to be equipped with carbide teeth 1, which saw blade 2 may be either a single blade, an endless blade or a disk, depending on whether a mill saw blade, an endless saw blade or a circular saw blade shall be fabricated, is provided with prepared abutting surfaces 3 for welding on of the carbide teeth 1 that already show the tooth geometry required later. To be able to exactly align the individual carbide teeth 1 relative to the abutting surfaces 3 of the saw blade 2 for the welding procedure, the saw blade 2 is clamped, acc. to FIG. 1, into a holding device 4 in such a way that the abutting surface 3, to which the relevant carbide tooth 1 shall be welded on, is situated opposite to positioning tongs 5, by means of which the relevant carbide tooth 1 is set butt-jointed to the front-side abutting surface 3 of the saw blade 2 and is held ready for welding. The carbide tooth 1 thus aligned relative to the saw blade 2 and/or the abutting surface 3 is then welded to the abutting surface 3 of the saw blade 2 by means of a laser welding device 6. For this purpose the laser beam 7 is focussed via an optical system 8 in such a way that a focal spot 9 is generated, as it is outlined in dashes in FIG. 2. This essentially lenticular focal spot 9 extends over the whole length of the joint 10 established between a carbide tooth I and the abutting surface 3, so that, under conditions comparable to spot welding, the welded joint is created at the same time over the whole joint length. As the heat load is consequently largely regular over the joint length, the risk of fissures due to thermal stress is reduced and a way of fastening of the carbide teeth at the saw blade 2 is ensured that meets all requirements, even if the saw blade 2 is very thin to keep cutting gaps small. The welding area resulting from the selected shape of the focal spot between the carbide teeth 1 and the saw blade 2 is schematically indicated in FIG. 2 by crosshatches 11. [0012] The focal spot [0012] 9 extending over the whole welding area 11 provides the favorable possibility to apply an additional heat treatment at reduced output via the laser beam 7. Thus it is possible, via the laser beam 7, to preheat the later welding area 11 to further reduce the risk of fissures due to thermal stress. Moreover, the welding area 11 can be reannealed after welding to reduce existing thermal stress. Therefore, only the output of the laser welding device 6 needs to be controlled accordingly to preheat the later welding area 11 prior to welding and then to perform welding at full laser output, before a secondary thermal treatment is applied, again at reduced output.
权利要求:
Claims (3) [1" id="US-20010006013-A1-CLM-00001] 1. Procedure for fastening a carbide tooth (1) at a saw blade (2), with the carbide tooth (1) fabricated according to the saw tooth geometry being held butt-jointed to the prepared front-side abutting surface (3) of the saw blade (2) and then being attached to the saw blade under addition of heat along the joint (10) between the saw blade (2) and the carbide tooth (1), characterised in that the carbide tooth is welded to the saw blade by means of a focal spot of a laser beam extending over the whole joint length. [2" id="US-20010006013-A1-CLM-00002] 2. Procedure according to claim 1 , characterised in that the saw blade and the carbide tooth are preheated prior to welding in the area of the joint by means of the laser beam at reduced output. [3" id="US-20010006013-A1-CLM-00003] 3. Procedure according to claim 1 or 2 , characterised in that the welding area is reannealed after welding by means of the laser beam at reduced output.
类似技术:
公开号 | 公开日 | 专利标题 CA2327676C|2008-01-29|Procedure for fastening a carbide tooth at a saw blade Vollertsen et al.2005|Welding with fiber lasers from 200 to 17000 W JP3405769B2|2003-05-12|Method for butt welding at least two metal sheets having different thicknesses US20200030889A1|2020-01-30|Method for manufacturing cutting tool KR101831584B1|2018-02-23|Method for laser welding of materials with different thicknesses US5368078A|1994-11-29|Finger joint cutter blade JP3751122B2|2006-03-01|Cleaving method EP1232819A2|2002-08-21|Methods for manufacturing band saw blades JP3449091B2|2003-09-22|Saw blade JP2008119708A|2008-05-29|Laser beam welding method for metal plate US5265500A|1993-11-30|Method of making shock-resistant and wear-resistant tools of composite steel structure CN103522030A|2014-01-22|Method for manufacturing cutting tool EP0754519B1|1999-06-02|Method of making a rotary tool for operation with reward of swarf JP3584716B2|2004-11-04|Cutting tool manufacturing method EP3663027B1|2021-11-17|Saw blades with set cutting teeth and their manufacturing methods Hack et al.1994|Cutting and welding applications of high power Nd: YAG lasers with high beam quality JP2010036296A|2010-02-18|Single crystal diamond cutting tool and method for manufacturing same JP2528627B2|1996-08-28|Drilling tool KR101843919B1|2018-03-30|brazing welding device for carbide cutting tool and jig using the device JP2867708B2|1999-03-10|Tube welding by consumable electrode welding JP3388967B2|2003-03-24|Twin beam processing method Schwede et al.2001|Multi spot laser beam processing fundamentals–applications–diagnostics–quality assessment JPH09225663A|1997-09-02|Laser welding method Stahlhut et al.2008|Automated, diodelaser-based brazing of carbide tips for optimised saw blade fabrication Sarady et al.1992|Joining of cemented tungsten carbide to tool steel using Nd: YAG-laser and optical fibres
同族专利:
公开号 | 公开日 EP1242208B1|2004-03-24| CA2327676A1|2001-06-27| DE50005824D1|2004-04-29| WO2001053028A1|2001-07-26| ATA218599A|2001-01-15| CZ20022259A3|2003-12-17| US6310314B2|2001-10-30| AT408080B|2001-08-27| ES2218256T3|2004-11-16| AU1975201A|2001-07-31| CA2327676C|2008-01-29| EP1242208A1|2002-09-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20040060396A1|2002-08-12|2004-04-01|Bohler Ybbstal Band Gmbh & Co. Kg|Starting material for saw blades or saw bands| US20070101592A1|2005-10-20|2007-05-10|Kraftool Mfg.Co., Ltd.|Pivotable handsaw assembly| US20070101588A1|2005-10-26|2007-05-10|Kraftool Mfg.Co., Ltd.|Handsaw assembly| US20070101589A1|2005-10-10|2007-05-10|Kraftool Mfg.Co., Ltd.|Multiangle cutting saw| US20070101828A1|2005-10-10|2007-05-10|Kraftool Mfg.Co., Ltd.|Method for processing a saw blade| US20070101591A1|2005-10-10|2007-05-10|Kraftool Mfg.Co., Ltd.|Hand saw| WO2009020901A1|2007-08-03|2009-02-12|Baker Hughes Incorporated|Earth-boring tools having particle-matrix composite bodies, methods for welding particle-matrix composite bodies and methods for repairing particle-matrix composite bodies| CN102500825A|2011-10-25|2012-06-20|浙江约特工具有限公司|Clamp for laser welding of double-metal band saw blade and welding device| US20140166797A1|2012-12-17|2014-06-19|Nolan Den Boer|Processor disk and method of making| CN111823327A|2020-07-10|2020-10-27|湖南泰嘉新材料科技股份有限公司|Hard alloy band saw blade for woodwork| US10933424B1|2019-12-11|2021-03-02|Pearson Incorporated|Grinding roll improvements|US4337750A|1980-10-08|1982-07-06|Norton Company|Abrasion resistant diamond blade| DE3216456A1|1982-05-03|1983-11-03|Robert Bosch Gmbh, 7000 Stuttgart|METHOD FOR Embedding Hard Materials In The Surface Of Chip Removal Tools| DE3434714C2|1984-09-21|1990-03-29|Horst 6450 Hanau De Lach|| DE4339661C2|1993-11-22|1996-09-26|Fraunhofer Ges Forschung|Process for the production of tubular blanks from thin or very thin sheet| DE19501442A1|1995-01-19|1996-07-25|Scintilla Ag|Prodn. of cutting tools for machine tools, esp. saw blades| AT180704T|1995-07-21|1999-06-15|Ledermann & Co|METHOD FOR PRODUCING A ROTATIONAL TOOL FOR MACHINING AND THE TOOL| JP3449091B2|1996-01-26|2003-09-22|松下電工株式会社|Saw blade|US7181993B2|2001-02-06|2007-02-27|Good Earth Tool Company|Apparatus and process for cutting of extruded material| US20080264231A1|2007-04-25|2008-10-30|Andrew Coe|Saw blade| US20090032571A1|2007-08-03|2009-02-05|Baker Hughes Incorporated|Methods and systems for welding particle-matrix composite bodies|
法律状态:
2000-12-22| AS| Assignment|Owner name: WINTERSTEIGER GMBH, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOBAUER, FRANZ;LIEDL, GERHARD;REEL/FRAME:011423/0630 Effective date: 20001207 | 2005-04-19| FPAY| Fee payment|Year of fee payment: 4 | 2009-04-20| FPAY| Fee payment|Year of fee payment: 8 | 2013-06-07| REMI| Maintenance fee reminder mailed| 2013-10-30| LAPS| Lapse for failure to pay maintenance fees| 2013-11-25| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2013-12-17| FP| Expired due to failure to pay maintenance fee|Effective date: 20131030 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 ATA2185/99||1999-12-27|| AT218599A|AT408080B|1999-12-27|1999-12-27|METHOD FOR ATTACHING A HARD METAL TOOTH TO A SAW BLADE| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|